Structure prediction and functional characterization of secondary metabolite proteins of Ocimum
نویسندگان
چکیده
Various species of Ocimum have acquired special attention due to their medicinal properties. Different parts of the plant (root, stem, flower, leaves) are used in the treatment of a wide range of disorders from centuries. Experimental structures (X-ray and NMR) of proteins from different Ocimum species, are not yet available in the Protein Databank (PDB). These proteins play a key role in various metabolic pathways in Ocimum. 3D structures of the proteins are essential to determine most of their functions. Homology modeling approach was employed in order to derive structures for these proteins. A program meant for comparative modeling- Modeller 9v7 was utilized for the purpose. The modeled proteins were further validated by Prochek and Verify-3d and Errat servers. Amino acid composition and polarity of these proteins was determined by CLC-Protein Workbench tool. Expasy's Prot-param server and Cys_rec tool were used for physico-chemical and functional characterization of these proteins. Studies of secondary structure of these proteins were carried out by computational program, Profunc. Swiss-pdb viewer was used to visualize and analyze these homology derived structures. The structures are finally submitted in Protein Model Database, PMDB so that they become accessible to other users for further studies.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملIn Silico and in Vitroinvestigations on cry4aand cry11atoxins of Bacillus thuringiensis var Israelensis
In the present study we attempted to correlate the structure and function of the cry11a (72 kDa) and cry4a (135 kDa) proteins of Bacillus thuringiensis var israelensis. Homology modeling and secondary structure predictions were done to locate most probable regions for finding helices or strands in these proteins. The JPRED (JPRED consensus secondary structure prediction server) secondary struct...
متن کاملMolecular Characterization of a Fungus Producing Membrane Active Metabolite and Analysis of the Produced Secondary Metabolite
Background: The majority of studies on soil Aspergillus concern the isolation and characterization of the antimicrobial compounds produced by this organism. Our previous studies indicated an isolated Aspergillus strain soil to be of interest, and this subject is further investigated here. Method: Soil samples of various locations in Iran were collected. Extract from Aspergillus sp. culture was...
متن کاملThe in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کامل